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I. ABSTRACT
Due to users’ freedom and anonymity, as well

as the absence of regulation imposed on social
media platforms, the spread of hate speech and
harassment in online communication is increasing
as the volume of internet information expands. The
hate speech focuses on the offensive, sexism, racism,
religion, and other topics, and it poses a threat to
public safety in the communities. Even though most
social networks and micro-blogging websites forbid
the use of hate speech, the size of these networks
and websites makes it almost impossible to control
all of their content. Therefore, the necessity arises
to detect such speech automatically and filter any
content that contains hateful language.

With the expansion of deep learning, quite a
lot of researchers have inclined toward using their
deep neural networks for abundant discipline. Even
for natural language processing (NLP)-based tasks,
deep networks, specifically recurrent neural net-
works (RNN), and their types are lately being con-
sidered over the traditional shallow networks. In the
present paper, we study this complex problem by
following a more holistic approach, which considers
the various aspects of abusive behavior. We focus
on Twitter, due to its popularity, and analyze tweets
from different angles of abusive behavior.

We propose a LTSM based classification system
that differentiates between forms of hateful speech.
This system describes a contemporary approach that
employs the C-BiLstm [16] model, a combina-
tion of the Bidirectional long short-term memory
(BiLSTM) and the CNN architecture. Long-term
sentence dependencies are recorded by the BiLSTM
before CNN is used to extract features. With a
constant initial learning rate of 0.8 and a dropout
ratio of 0.5, the model achieved an accuracy of
87% with an early stopping criterion based on loss
function during training.

Keywords: Sentiment analysis · NLP · Deep
learning · Hate speech · Offensive language · Bi-
LSTM · LSTM · Twitter · CNN

II. INTRODUCTION
Online social networks (OSN) and micro-

blogging websites are attracting internet users more
than any other kind of website. Their contents
are rapidly growing, constituting a very interesting
example of the so-called big data. Big data has been
attracting the attention of researchers, who have
been interested in the automatic analysis of people’s
opinions and the structure/distribution of users in
the networks, etc. While these websites offer an
open space for people to discuss and share thoughts
and opinions, their nature and the huge number of
posts, comments, and messages exchanged makes
it almost impossible to control their content. Fur-
thermore, given the different backgrounds, cultures,
and beliefs, many people tend to use aggressive and
hateful language when discussing with people who
do not share the same backgrounds.

Words have energy and power with the ability to
help, to heal, to hinder, to hurt, to harm, to humiliate,
and to humble.” [15] Indeed, words are the most
powerful of all. Often social media services such
as Facebook and Twitter were criticized for not
having a strict measures concerning the usage of
toxic speech.

EU defines hate speech as: [13]
All conduct publicly inciting violence or
hatred directed against a group of persons
or a member of such a group is defined by
reference to race, color, religion, descent
or national or ethnicity.



2

Hate speech and offensive language differ in
the subjectivity of attack. Also, different countries
have different legislative norms when dealing with
this issue. From the past decade, several sentiment
analysis studies have been conducted related to hate
speech in different social networking and micro-
blogging sites like Facebook, Twitter, Reddit and
YouTube. In this work, a sentiment analysis classi-
fication system is developed that utilizes the concept
of deep learning to study the occurrence of hate
speech on Twitter.

Text classification models have been heavily uti-
lized for a slew of interesting natural language pro-
cessing problems. Like any other machine learning
model, these classifiers are very dependent on the
size and quality of the training dataset. Insufficient
and imbalanced datasets leads to poor performance.

In [23], the author used ConceptNet and Wikidata
to improve sexist tweet classification by two meth-
ods (1.) text augmentation and (2.) text generation
in order to increase the size of the training set,
preserve the label, increase diversity, and boosts the
performance of the classifier.

In our study we first try to improve the dataset by
text augmentation method, and improve the classi-
fication model by the use of a multi-step classifier,
and word-embeddings with a deep learning based
neural network.

The study contributes to the field in a four-fold
manner as:

• Augment and generalize the dataset by combin-
ing multiple annotated datasets available online
for tweets.

• Propose a methodology that employs deep neu-
ral networks for textual data to learn deep
features and can later be used for multi-class
classification of tweets as hateful, offensive,
abusive, spam, or normal.

• Investigate the suitability of adapting pre-
trained word-embeddings (GloVe word-
embeddings) to individually convert every
single token into vectors better known as an
embedding matrix. Detection of Hate Speech
and Offensive Language in Twitter Data

• Experiment with stacked CNN, BiLSTM and
a BiLSTM-CNN networks and delineate their
effect on results.

III. MOTIVATION AND RELATED WORK

A. Motivation

Hate speech is a particular form of offensive
language where the person using it is basing his
opinion either on segregative, racist or extremist
background or on stereotypes. Merriam-Webster de-
fines hate speech as a “speech expressing hatred of
a particular group of people.’, whereas an online
dictionary defines hate speech as

A speech that attacks a person or a group
based on protected attributes such as race,
religion, ethnic origin, national origin, sex,
disability, sexual orientation, or gender
identity.

Hate speech is considered a world-wide problem
that many countries and organizations have been
standing up against. With the spread of the in-
ternet, and the growth of online social networks,
this problem becomes even more serious, since the
interactions between people become indirect leading
to an enormous amount of opinionated data available
on the web. This data serves well in the area of
sentiment analysis, text analysis, big data or data
mining. Many a time, people post hate speech or
use offensive language to express their views. These
kinds of posts on social media may be hurtful to
some people of certain religion or race or gender.
The problem of unfiltered hate speech has also
encouraged turning up group-based hatred against
some minorities.

For such reasons, websites such as Facebook,
Youtube and Twitter prohibit the use of hate speech.
However, it is always difficult to control and filter all
the contents. So, hate speech identification has be-
come a significant task of sentiment analysis. Once
hate speech is detected, the respective organization
can then decide how to deal with them.

In the research field, hate speech has been subject
to some studies, trying to automatically detect it.
Most of these works on hate speech detection have
goals such as the construction of dictionaries of
hate words and expressions [20] or the binary
classification into “hate” and “non-hate” [25].
However, it is always difficult to clearly decide on a
sentence whether it contains hate or not, in particular
if the hate speech is hiding behind sarcasm or if no
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clear words showing hate, racism or stereotyping
exist.

This makes the task of hate speech detection
quite different and more challenging than sentiment
analysis: not only is it context-dependent, but also,
we should not rely on simple words or even n-grams
to detect it. In a related context, writing patterns
have proven to be effective in text classification tasks
such as sarcasm detection [6], [7], multi-class
sentiment analysis [5] or sentiment quantification
[4]. Through this work, we try to extract patterns of
hate speech and offensive texts using a deep learning
approach, and use these, along with other word-
embedding features to detect hate speech in short
text messages on Twitter.

B. Related Work

The extraction and analysis of text-based data
have emerged to be an active research field. Owing
to the global availability of such data, text analytic
has acquired a lot of attention. Several studies are
being conducted on these data over the past decade;
the only differences are the methods used and the
targeted domain. Table I presents a brief investiga-
tion of previous work carried out for hate speech
detection.

As seen in Table I, all the studies were imple-
mented on Twitter data. The reason is the effortless
availability of tweets that can be crawled using
the Twitter API. Out of all, the majority of the
research focuses on the identification of hate speech
and differentiating them with non-hate (or offensive)
texts.

Citations Classes Model Dataset used

Waseem [26]
3 classes

(Sexism, Racism, None)
Empirical Twitter

Park et al. [18]

3 classes

(Sexism, Racism,

Neither)

CNN Twitter

Watanabe et al. [28]
3 classes

(Sexist, Racist, Neither)

SVM,

CNN + LSTM
Twitter

Mathur et al. [17]
2 classes

(Hate speech, Abusive)
CNN-LSTM Twitter

Wiedemann, et al. [29]
2 classes (Offensive,

Other)
BiLSTM – CNN Twitter

TABLE I: Existing research in Hate speech Detec-
tion.

The authors in this study [2] addresses the
problem of hate speech hovering on social media
by combining multiple datasets and generating an
experimental dataset with balanced classes to avoid
unbiased training. The goal of the present work is
to overcome the limitations of the baseline models:
(1) effect of imbalance data on the results and
(2) improving accuracy for LSTM and BiLSTM
classifiers. They developed a classification model to
evaluate the data and categorize them into differ-
ent classes allowing the model to understand the
sentiments of a variety of sentences. Hate speech
detection is a prominent application of sentiment
analysis. Thus they experimented with a variety
of LSTM and BiLSTM models — simple deep
neural networks and stacked networks to achieve
the desired goal and their best models acquired an
”accuracy of 86% for LSTM and 80.1% for
BiLSTM.”

In some cases, CNNs, when used with word em-
beddings, have also emerged as a possible solution
for the classification of toxic content. Thus Follow-
ing the work by Collobert et al. (2011) [21], the
authors of this study [3] employs a Convolutional
Neural Network (CNN) model with the word vectors
that are merged with a set of extracted features,
downsized using max-pooling, and brought together
with character n-grams (4-grams) fed to the neural
network model to predict the categories of each
tweet (racism, sexism, both, and non-hate)

They experimented 4 approaches to hate-speech
classification, based on different feature embeddings
and the dataset created by Waseem (2016) [27]. The
average 10-fold cross-validated results for all four
models were shown, and compared to the Logistic
Regression (LogReg) model used by Waseem and
Hovy (2016) [27]. It was observed that all CNN
models convincingly outperformed Logistic Regres-
sion in terms of both precision and F 1 -score, while
the LogReg model achieved better recall than all
the neural network models. ”The model developed
with combination of word2vec + character n-
grams showed better precision (86.61%), and
recall (70.42%) with an F-score of 77.38%.”

In a subsequent study [28] the authors proposed
an approach to detect hate expressions on Twitter
using an approach based on collecting unigrams and
patterns from the training set. These patterns and
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unigrams are later used, among others, as features to
train a machine learning algorithm. To evaluate the
performance of classification, they used 4 different
key performance indicators (KPIs) which are the
percentage of true positives, the precision, the recall
and the F1-score. The results showed an accuracy
equal to 87.4% on detecting whether a tweet
is offensive or not (binary classification), and
an accuracy decreased to 78.4% on detecting
whether a tweet is hateful, offensive, or clean
(ternary classification).

The authors [9] of this study states that metadata
information of a tweet like punctuation, hashtags,
and tagged users are really important. So they fol-
lowed a more “holistic” approach to treat a.) raw
text, and b.) domain specific metadata, separately
at first, and later combining them into a single
model. After experimenting with several choices for
the Recurrent Neural Networks (RNN) architecture
(Gated Recurrent Unit or GRUs, Long Short-Term
Memory or Long Short-Term Memory Networks
(LSTMs), and Bidirectional RNNs), they found out
that simple GRUs are performing better than a com-
plex units.The best performance is reached when all
attributes are used.

This demonstrates the fact that the metadata
information does not overlap the information
that can be extracted from raw text, and this is
why the proposed model can be quite powerful
and outperforms the state-of-art models for these
tasks. They achieved an accuracy of 93% and an
AUC of 89%.

The work present in this paper is more in line
with the citations of Table II. This study will try to
identify the tweets with hateful language and clas-
sify them into offensive, abusive, normal, (hateful -
racism and sexism) classes.

IV. RESEARCH METHODOLOGY

Deep learning technology is increasingly and
extensively used for text classification, gradually
taking the role of traditional machine learning tech-
niques. Deep learning can automatically learn the
characteristics of objects from vast amounts of data
and more correctly express them. When classifying
texts using a deep learning approach, convolutional
neural networks (CNN) and long short term memory
networks (LSTM) are widely used. One type of

Citations Classes Model Dataset used

Gröndahl et al. [12]

3 classes

(Hate, Offensive,

Ordinary)

LR, MLP, CNN +

GRU, LSTM
Twitter

Gao and Huang [11]

3 classes

(Hate, Offensive,

Clean)

6 classes

(Toxic, Obscene, Insult,

Hate, Severe Toxic,

Threat)

CNN, LSTM,

Bi-LSTM, Bi- GRU
Twitter, Wikipedia

Davidson et al. [8]

3 classes

(Clean, Offensive,

Hateful)

RF, LR, SVM, NB Twitter

TABLE II: Existing research in Hate speech and
offensive language Detection.

multi-layer neural network is convolutional neural
networks designed to enhance error back propaga-
tion.

Thus we are using sentiment analysis on Twitter
data for Hate speech detection. Various steps of
the analysis are briefly explained below. Later, in
Figure 1 we present a system architecture with
BiLSTM-CNN based classifier used in this study.
Also an overall structure of the model is mentioned
in Figure 4, that describes the input layers, hidden
layers, activation function, and output layer.

A. Dataset source and description

Data Name Classes Approx tweets
(in thousands)

WZ-LS [27] racism, sexism,
both, and neither 15

DT [8] offensive, hate, and neither 24

FOUNTA [10] normal, spam,
hate, and abusive 90

TABLE III: Data Source

B. Data Gathering
Dataset quality is mandatory with proper labels

that can train the network with better learning.
To avoid wastage of time, the study is inclined
towards pre-annotated Twitter datasets that are pub-
licly available, we are just combining and general-
izing the labels.

The dataset from Crowdflower website [10] con-
tains tweets crawled from hatebase.org. It contains

https://github.com/zeeraktalat/hatespeech
https://github.com/t-davidson/hate-speech-and-offensive-language
https://github.com/ENCASEH2020/hatespeech-twitter
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approximately 100K tweets with four labels as—
abusive, normal, hate, and spam.But, after analyzing
the entire dataset, it was found that the dataset has a
strong class imbalance for “hate speech” tweets. On
average, only 6% of the entire dataset has tweets
with the label “hate” compared to the other three
classes. For that reason, here another dataset is
also considered which is available on github [8]
by Davidson and Thomas, which contains Tweets
that are labeled 3 major classes as – hate speech,
offensive, and neither.

Adding onto this, we gathered some tweets using
APIs from the tweet ID given in the data [27] also
we merge the above data with the dataset provided in
SemEval2019 [1] which are annotated and labeled
into 3 classes as – Hate speech, Targeted, Aggres-
sive.

After combining all the datasets and removing
the tweets labeled “Targeted”, we generalized the
labels into fewer classes as – offensive, abusive,
normal, hateful, and spam. After a lot of manip-
ulation, the three data sets were combined to make
a bigger data set and with generalized labels, to
make the dataset balanced and perform the task of
classification.

After pre-processing, the final dataset consists
of approx 94K samples with label distribution de-
scribed in

label total tweets distribution in data
abusive 27150 29%
hateful 9422 10%
normal 16048 17%
offensive 20429 22%
spam 21205 22%

TABLE IV: Data Distribution

C. Data Pre-processing

The data that is collected might contain a lot of
junk and irrelevant data. So, the pre-processing of
the data is required to enhance the data. The very
first step of pre-processing was to remove redundant
data as we merged 3 data and created new data for
this study.

While cleaning the tweets data, we followed the
below steps,

1) Removal of URLs from the tweets (which
starting either with “http://” or “https://”)

2) Removing tags (i.e., “@user”) and irrelevant
expressions (words written in languages that
are not supported by ANSI coding).

3) Removing stop-words, punctuation’s, and
mapping contractions

4) Converting the tweets to lower-case
5) Decomposing the hashtags into words
6) Tokenization of data - Before feeding any

text to the network, we need to transform each
sample to a sequence of words.

7) Stemming of words - Group together with the
words that root out from a similar word. For
example, “presented” and “presenting” are all
the stems of “present.”

As neural networks are trained in mini-batches,
every sample in a batch must have the same se-
quence length (number of words). Tweets containing
more words than the sequence length are trimmed,
whereas tweets with fewer words are left-padded
with zeros (the model learns they carry no informa-
tion). Ideally, we want to avoid outliers as they waste
resources (feeding zeros in the network), making the
training of the network slower.

Therefore, we take the 95th percentile of length
of tweets (with respect to the number of words) in
the input corpus as the optimal sequence length. For
tweets, this results in sequences of 21 words (in
effect, 5% of tweets that contain more than 21 words
are truncated).

We additionally remove any words that appear
only once in the corpus, as they are most likely typos
and can result in over-fitting. Once pre-processed,
the input text is fed to the network for learning.

D. Feature Extraction
Operations on single strings like dot products or

back propagation cannot be done. Therefore, instead
of a string, they are converted into vectors (typically
25-300 dimensions) and fed to them for the task.
The most popular pre-trained word-embeddings are
Word2Vec [22] and GloVe (global vectors).

We used pre-trained word embeddings from
GloVe [14], which is constructed on more than
2 billion tweets. We choose the highest dimension
embeddings (128) available.
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E. Proposed System Architecture

Fig. 1: System Model
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F. Deep Learning for Text Analysis

The classification model can be trained using a
machine learning algorithm or a deep neural net-
work. This study inspired from [19] utilizes the
concept of deep learning for training and classifica-
tion. For sequential data, in general, RNNs are used
which can further be an LSTM model. Given below
is a brief understanding of RNN and LSTM deep
neural networks.

1) Convolution Neural Network (CNN): CNN
is a multi-layer feed-forward neural network which
improves the error in back-propagation network
(BP) and reduces computation time and complexity
of BP. It is recently used for sentiment classification
because it can recognise local features by using
convolution kernel, and automatically learns these
features for classification solution.

CNN model consists of three main layers; con-
volution layer, pooling layer, and fully connected
layer [30]. Figure 2 shows the stages of CNN
structure for text classification. Sentences are con-
verted into a matrix of numbers and input to the
convolutional layer. Each sentence consists of words
or tokens, and each token is corresponded to a row
or vector on the matrix table. These vectors are
typically generated by embedding techniques such
as the Word2Vec and GloVe model.

Fig. 2: CNN Architecture

CNN model takes the input of vectors and extracts
local feature using filters. The most computations of
features are performed in convolutional layer which
is the most important layer in CNN. Convolutional
layer produces feature maps using a function called
convolution kernel. After the convolution operation,
pooling layer extracts the most important features.

The Pooling layer calculates local sufficient
statistics. This process allows the pooling layer
to reduce feature dimensions, makes CNN achieve
computational time and cost reduction, and pre-
vents the model from overfitting problem. Lastly,
the Fully connected layer produces a probability
distribution to classify sentiment results.

2) Recurrent Neural Network (RNN): In NLP,
word and sentences are analyzed, where each word
in a sentence depends upon the word that comes
before and after it. For such dependency, we have
a recurrent neural network (RNN). The RNN is
slightly different from the long-established feed-
forward NN we know about. We know that a
feed-forward network comprises input nodes, hidden
units and output nodes. RNN differs from the feed-
forward neural network because of its temporal
aspects. In RNNs, every word in an input sequence
will be related to a definite timestamp. And the total
number of timestamp will be the maximum length
of the sequence.

Fig. 3: RNN Cell

Each timestamp(RNN cell) shown in Figure 3 is
associated with a hidden state vector ht and and
the input value xt . This vector summarizes and
encapsulates the data from the previous timestamp.
This hidden state functions as a current state word
vector and the previous timestamp has hidden state
vector as well.

Although RNNs seem to work brilliantly for short
sequences, for long sequences its other variants are
considered. The long short-term memory (LSTM)
and grated recurrent unit (GRU) are two variants
of RNN created to resolve the problem of short-
term memory and vanishing gradients. Both of them
have gates as an internal mechanism that helps in
regulating the flow of the network.
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3) Long Short-Term Memory Units (LSTM):
Long short-term memory (LSTM) networks are a
particular kind of RNN capable of analyzing and
learning long-term dependencies. LSTMs are ex-
plicitly considered to deal with the long-term de-
pendency problem. They can easily remember any
piece of information as long as it is required, best
for while working on a sequence of sentences. Long
short-term memory units are modules that can be
used inside of recurrent neural networks. At an
advanced level, it makes sure that ht can encapsulate
information about long-term dependencies in the
text.

Fig. 4: LSTM Cell

An LSTM cell Figure 3 is similar to the RNN
except for the gates and cell state. LSTM has three
gates—input gate, forget gate and output gate. Each
gate has its purpose and computes different opera-
tions. The gates in LSTM contain sigmoid activation
function.

As described earlier, tanh activation squishes the
value between -1 and 1. Similarly, a sigmoid activa-
tion squishes the value between 0 and 1. This helps
in deciding whether to update or forget data. This
helps LSTM in overcoming the vanishing gradient
and exploding gradient problem which appears in
the back-propagation.

4) Bi-directional Long Short-Term Memory
Units (Bi-LSTM): BiLSTM is a variant of LSTM
network that works both in the direction of the
network. In this, the network flows in feed-forward
as well as in a feedback loop for the units. This is
quite beneficial when dealing with natural languages
as in a sentence the meaning of each word depends
on its neighboring words as well. A meaning of

a word can change on account of its surrounding
words and the overall sense of the sentence. This is
why it is better that the network is trained in both
ways.

Fig. 5: BILSTM Architecture

G. Model Analysis
The first four layers of the text categorization

model based on CNN and LSTM or its version
can be regarded as the input layer, convolutional
network layer, LSTM or its variant layer, and soft-
max classifier layer. In this study, both subjective
and objective text data are used. The basic model
structure is shown below:

Fig. 6: Short Hand Model Architecture

A classification model is developed to evaluate the
data and categorize them into different classes. This
allows the model to understand the sentiments of a
variety of sentences. In this proposed classification
system, we have developed a selection of CNN
combined with BiLSTM-based classifiers [24]. Our
classifier has five base layers shown in Figure 7 that
are:

• Sequence Input Layer - This layer takes the
sequential input value, in our case, the embed-
ding matrix of dimension 128.
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• Convolution Layer - CNN model is good
at extracting the most important words from
tweets or sentences and the convolution layer
is the main step in CNN model. The word
vectors matrix from word embedding layer are
fed into one dimensional convolution layer. In
one-dimensional convolution layer, the convo-
lution word vector matrix is calculated through
N filters and width q of convolution kernel
to construct the local feature of n-gram.The
second layer is the LSTM or BiLSTM layer.

Fig. 7: CNN-BILSTM Architecture

• Max Pooling Layer - Once convolution opera-
tion produces feature maps, pooling layer then
extracts the most important features to calculate
the local sufficient statistics. One-dimensional
max-pooling converts each kernel size of input
into a single output of the maximum number
to reduce or down-sample version of the input.
This is the reason why CNN model effectively
reduces the number of features to prevent over-
fitting, also reduces time and complexity of
parameters.

• BILSTM Layer - Bi-LSTM allows the infor-
mation to flow in both directions; backward
to forward and from forward to backward by
using two hidden states. This structure helps
the network to retain preceding and succeeding
information. The sequence output of the first
layer in Bi-LSTM is the input of the second
layer, and the sequence output of the second
layer is the concatenation of the last unit output
of forward and backward layers

• Dense Layer and Result - Dense layer is used
in the model to connect each input with every
output by using weights. Softmax is a function
used in the final layer to produce the output.
It calculates the possibilities of each possible
class. The result of tweet is classified into either
of the classification by using binary cross-
entropy. The output layer is mapped with the
classification layer that provides the predicted

value as hate speech, offensive language or
spam, normal, abusive.

H. Parameters Optimization
In many cases, the model may produce less accu-

racy or even produce overfitting or underfitting. To
obtain high model performance, conducting hyper-
parameters tuning is very critical. Therefore, the
randomised search strategy was used to tune hyper-
parameter and optimise the accuracy.

For the model training, the dataset was divided
into 75% and 25% in training and validation re-
spectively. The maximum length of tweets was set
to 21.

Parameters Values
Embedding Dimension 128
Kernel & Pool size 3
BILSTM Output size 128
Activation Softmax & Relu
Recurrent Dropout 0.75
Batch size 32
Vocab size 69000
Loss function Cross Entropy
Optimizer Adam
Learning rate 0.01

TABLE V: Hyper Parameter settings

The experiment is built using the TensorFlow
framework. The tuned model with these parameters
defined in the Table V resulted in 73.5% of valida-
tion accuracy.

V. EXPERIMENTAL RESULTS

The comparison tests in this study largely use
the classification methods of Simple BiLSTM, CNN
and a CNN-BiLSTM model. The results of the
classification are displayed in the Table VI. The
following are the primary measures for evaluating
text classification: accuracy and loss rates. All mod-
els are trained over 50 iterations.
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Model Comparison of Experimental Results
Validation Accuracy Validation Loss

Simple BiLSTM 73.84% 0.8659
CNN 72.81% 1.1763
C-BiLSTM 73.51% 0.9203

TABLE VI: Accuracy measures from different mod-
els

1) Results from Simple BiLstm: From the table
above, we can see the Simple BiLSTM model has
the highest validation accuracy and lowest validation
loss, which makes BiLstm our best model but while
looking at the training graph presented in Figure 8,
we can infer that with the increase in epochs, the
model is being underfitted which makes the
solution not so desirable.

Fig. 8: Learning graph for BiLSTM

2) Results from CNN: From the table above, we
can see the CNN model has the lower validation
accuracy and highest validation loss, which makes
CNN underfit the training samples as represented
in Figure 9

Fig. 9: Learning graph for CNN

3) Results from C-BiLstm: From the table
above, we can see the C-BiLstm model has the lower
validation accuracy compared to Bi-Lstm model
and higher validation loss, but while looking at the
learning graph we can see that our model has learnt
well as compared to others as in this the validation
loss remains constant after 5th Epoch. The same can
be represented in Figure 10

Fig. 10: Learning graph for C-BiLstm

Fig. 11: Accuracy graph for C-BiLstm

Cross-validation is carried out utilising a range
of test items and training objects in order to prevent
overfitting during the experimental phase. The line
graphs above show the loss rate of the loaded
pre-training model during training for each of the
three models. The accuracy graph demonstrated in
Figure 11, model has learnt a good amount of
information until a particular epoch, after that the
accuracy remains constant and model was being
overfitted, so to stop that from happening, we have
applied an Early stopping function which stops the
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training when the loss rate is steadily decreasing and
the accuracy of the model used is steadily rising.

4) Comparison to Baseline model: The first base
model is of [7] which has performed hate speech
detection using a variety of techniques on parts
of this dataset. Davidson and other authors have
incorporated several statistical classifiers, namely
logistic regression, linear SVM, Naı̈ve Bayes and
Random Forest in their work. The authors created
the sentiment classifier using 25K tweets that were
annotated by the workers of Crowdflower.com. Al-
though the author has not used any deep learning
models in their work, the research still serves as
suitable as a performance baseline model for this
work. The model achieved an overall F1 score of
91%, but a huge drawback in their work is the
strong imbalance for data of class “hate speech” as
compared to the other classes. Their results showed
how imbalance data heavily affect their results.

Hence, the objective of this model is to improve
hate speech accuracy. For that reason we created
a dataset with equal data in each class. Our C-
BiLSTM model performs admirably on three of the
five classes with an accuracy of 73.51%, as indicated
in the table and figures above. Our C-BiLSTM
model performs at its best with the supplied dataset
and preset custom parameters. Even if our model
is not as sophisticated as others, it nonetheless
produces a respectable result, demonstrating the
model’s versatility with various labels and lesser
miss-classifications.

VI. COST AND CHALLENGES FOR THE MODEL

A. Cost of the Approach

Here, the impacts of numerous elements on the
performance of our model are investigated.

1) The length of the maxlen: The length of 30
words, which is thought to be the one that most
closely resembles the average tweet length in the
dataset, yields the best result. The accuracy will
sharply decline after the maxlen exceeds the length
of the tweet because the number of zero vectors in
the article’s vectors will rise significantly.

2) GPU processing cost: The execution time to
train an epoch was approx 1500 seconds on 12

GB NVIDIA Tesla K80 GPU on TensorFlow, where
early stopping was achieved at 5th epoch.

B. Challanges Encountered
Most of the challenges for text classification

problems were faced during data gathering and pre-
processing phase, as the data was quite imbalanced
so we applied methods to gather, generalize and
merge multiple datasets to produce a final data for
the experiment.

Negation permits to change a word’s meaning to
its inverse meaning. Therefore during the extraction
of features it is essential to represent the process
whether or not a word is negated.

Short informal text is one of the challenges in
sentiment analysis. They are restricted in length gen-
erally spanning one or less than one sentence. They
tend to have several slang phrases, misspellings
and shortened word forms. They also have special
markers namely hashtags that are used to facilitate
search but also represent a sentiment or topic. To
deal with this issue, we have deleted the tweets
which are classified as spam or have just one word
and hence avoiding overfitting of the data.

While training the model for Bi-Lstm and CNN,
we ran into the problem for underfitting, to resolve
this we had to follow either of the below approach

• Adding more data
• Removing features from the training sample
• Increasing model complexity
We decided to go with the last step, as adding

more data to our sample was not practically possible
for us without scraping the twitter and manually
labeling the data.

So to solve this issue, we increased the model
complexity by combining Bi-Lstm with CNN to
capture features more precisely and with lesser
noise. This model also improved the classification
accuracy of tweet content and made it more gener-
alized since which can effectively convey text se-
mantics and maintain more contextual information.
Thus making the C-BiLstm the best model for
the given dataset under given hyper parameters.

VII. FUTURE WORK

Through this study, we tried to work towards
reducing the hate-speech content from the internet
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but as just detecting hate-speech with the help of
deep learning model isn’t enough, we have to build
a system that detects and helps user in replacing
words with lesser offensive or hateful making the
internet more respectful and also giving the users
controlled freedom of speech.

A good system that can help in maintaining the
internet hate-speech can be obtained by building
a chrome extension that can possibly detect any
hateful or offensive words while the user is typing
it. Giving user a warning when any such text is
detected before they publish it. Suggesting them
with lesser offensive or hateful words to replace
that with it. The same can be seen in the Fig-
ure 1, this extension will open doors to various
new findings and also help in building dictionary
for hateful/offensive words which will again help in
improving the accuracy of the existing model.

VIII. CONCLUSION

Due to users’ freedom and anonymity, as well as
the absence of regulation imposed on social media
platforms, the spread of hate speech and harassment
in online communication is increasing as the volume
of internet information expands. It is difficult to
control and filter all the contents. So, hate speech
identification has become a significant task of sen-
timent analysis. Most of the present works on hate
speech detection have goals such as the construction
of dictionaries of hate words and expressions or the
binary classification into “hate” and “non-hate”.
In this study, we aimed to improve the accuracy of
hate speech detection systems with the help of deep
learning concepts.

The present work tries to improve the classifica-
tion by the use of a multi-step classifier and word-
embeddings with a deep neural-based network. The
primary goal of the present work is to develop a C-
BiLstm model (Combination of Bi-direction LSTM
and Convolution layer). The paper also illustrates the
ability to extract characteristics and learn informa-
tion from both past and future scenarios. Throughout
the study, we created a class balanced dataset which
was later used to train various models like CNN,
LSTM and Bi-LSTM to overcome the limitations
of the baseline models: effect of imbalance data on
the results.

Utilising a suitable window to identify the fea-
tures and setting the maximum length to a specific
length(21) lead to increased performance. Later,
with more such specific hyper setting parameters
and the dataset, we found out that our C-BiLstm
model performed better compared to others when
classifying the tweets. This model achieved an ac-
curacy of 73% and also outperformed the miss-
classification for the class labelled “hate speech”
compared to the baseline model.

The above work contributed to the study and
analysis of the occurrence of toxic content (hate
speech, offensive languages) over social media.
Consequently, drawing off the curtains and increas-
ing public transparency and making world safer
and better where the users can freely direct their
thoughts and opinions, detection and removal of
toxic contents are reasonably essential.
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